Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
نویسندگان
چکیده
The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.
منابع مشابه
Application of multi-scale finite element methods to the solution of the Fokker–Planck equation
This paper presents an application of multi-scale finite element methods to the solution of the multi-dimensional Fokker–Planck equation. The Fokker–Planck, or forward Kolmogorov, equation is a degenerate convective–diffusion equation arising in Markov-Process theory. It governs the evolution of the transition probability density function of the response of a broad class of dynamical systems dr...
متن کاملThe Partition of Unity Finite Element Approach to the Stationary Fokker-Planck Equation
The stationary Fokker-Planck Equation (FPE) is solved for nonlinear dynamic systems using a local numerical technique based on the meshless Partition of Unity Finite Element Method (PUFEM). The method is applied to the FPE for two-dimensional dynamical systems, and argued to be an excellent candidate for higher dimensional systems and the transient problem. Variations of the conventional PUFEM ...
متن کاملA homotopic approach to domain determination and solution refinement for the stationary Fokker–Planck equation
An iterative approach for the solution refinement of the stationary Fokker–Planck equation is presented. The recursive use of a modified norm induced on the solution domain by the most recent estimate of the stationary probability density function, is shown to significantly improve the accuracy of the approximation over the standard L2-norm based Galerkin error projection. The modified norm is ...
متن کاملNumerical Solution of the Fokker-planck Equation by Finite Difference and Finite Element Methods - a Comparative Study
Finite element and finite difference methods have been widely used, among other methods, to numerically solve the Fokker-Planck equation for investigating the time history of the probability density function of linear and nonlinear 2d and 3d problems, and also the application to 4d problems has been addressed. However, due to the enormous increase of the computational costs, different strategie...
متن کاملAnalysis and Implementation of Numerical Methods for Simulating Dilute Polymeric Fluids
Analysis and Implementation of Numerical Methods for Simulating Dilute Polymeric Fluids David Knezevic Doctor of Philosophy Balliol College Michaelmas Term 2008 In this thesis we develop, analyse and implement a number of numerical methods for simulating dilute polymeric fluids. We use a well-known model in which the polymeric fluid is represented by a suspension of dumbbells in a Newtonian sol...
متن کامل